Important open questions for (circular) e⁺ e⁻ colliders

Contribution to panel discussion

LianTao Wang 王连涛

High Energy Physics Program. IAS. HKUST Jan. 25, 2018

How many Zs? Giga-Z vs Tera-Z

- Oblique S and T: O(10)
 improvement with Giga Z.
 - Need to improve other systematics: m_W , m_t etc to improve further.
- More Zs can do more:
 - rare Z decay
 - Flavor.

J. Liu, X. Wang 1712.07237

Br[Z]

Higher E, ttbar threshold?

Higher E, ttbar threshold?

- This alone only a small improvement for the fit to S and T.
 - Need many other improvements as well.

Higher E, ttbar threshold?

- This alone only a small improvement for the fit to S and T.
 - Need many other improvements as well.
- However, higher energy can improve sensitivity to new physics.
 - 100 TeV pp may cover some of these as well. Needs more studies.

For Higgs measurement:

precision reach of the 12-parameter EFT fit (Higgs basis) LHC 3000/fb Higgs + LEP $e^+e^- \rightarrow WW$ light shade: lepton collider only solid shade: combined with HL-LHC CEPC 250GeV(5/ab) FCC-ee 250GeV(5/ab) + 350GeV(1.5/ab) $C 250 \text{GeV}(2/\text{ab}), P(e^-, e^+) = (\mp 0.8, \pm 0.3)$ 10⁻ precision 10⁻² 10^{-3} 10^{-4} $\delta \mathsf{y}_{\mu}$ δc_Z $\overline{c}_{\gamma\gamma}$ $\overline{c}_{Z\gamma}$ \overline{c}_{gg} δy_t δy_c δy_b $\delta \mathsf{y}_{\tau}$ λ_Z C_{ZZ} $c_{Z^{\square}}$

Big step beyond the LHC

- Both 350 and polarization could help.
 - Complementary in places, not qualitatively different.

Scenarios

Basic CEPC-like version:

5 ab⁻¹ on 250, I million Higgs. I yr on Z-pole, Giga-Z

FCC-ee:

FCC-ee possible operation model						
working point	luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	total luminosity (2 IPs)/ yr	physics goal	run time [years]		
Z first 2 years	100	26 ab ⁻¹ /year	150 ab ⁻¹	4		
Z later	200	52 ab ⁻¹ /year				
W	32	8.3 ab ⁻¹ /year	10 ab ⁻¹	1		
Н	7.0	1.8 ab ⁻¹ /year	5 ab ⁻¹	3		
machine modification for RF installation & rearrangement: 1 year						
top 1st year (350 GeV)	0.8	0.2 ab ⁻¹ /year	0.2 ab ⁻¹	1		
top later (365 GeV)	1.5	0.38 ab ⁻¹ /year	1.5 ab ⁻¹	4		

Scenarios

Basic CEPC-like version:

5 ab⁻¹ on 250, I million Higgs. I yr on Z-pole, Giga-Z

Something in between?

FCC-ee:

FCC-ee possible operation model						
working point	luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	total luminosity (2 IPs)/ yr	physics goal	run time [years]		
Z first 2 years	100	26 ab ⁻¹ /year	150 ab ⁻¹	4		
Z later	200	52 ab ⁻¹ /year				
W	32	8.3 ab ⁻¹ /year	10 ab ⁻¹	1		
Н	7.0	1.8 ab ⁻¹ /year	5 ab ⁻¹	3		
machine modification for RF installation & rearrangement: 1 year						
top 1st year (350 GeV)	0.8	0.2 ab ⁻¹ /year	0.2 ab ⁻¹	1		
top later (365 GeV)	1.5	0.38 ab ⁻¹ /year	1.5 ab ⁻¹	4		

My personal ordered wish-list

- After 1 million Higgs, move on to 100 TeV pp as soon as possible.
- ttbar threshold, perhaps a little bit higher for better measurement of top couplings.
- Tera-Z for rare decay, flavor physics.

extra

Ultimate precision?

	TLEP-Z	TLEP-W	TLEP-t
$\alpha_s(M_Z^2)$	$\pm 1.0 \times 10^{-4}$ [37]	$\pm 1.0 \times 10^{-4}$ [37]	$\pm 1.0 \times 10^{-4}$ [37]
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$	$\pm 4.7 \times 10^{-5}$	$\pm 4.7 \times 10^{-5}$	$\pm 4.7 \times 10^{-5}$
$m_Z [{ m GeV}]$	$\pm 0.0001_{\rm exp}$ [2]	$\pm 0.0001_{\rm exp}$ [2]	$\pm 0.0001_{\rm exp}$ [2]
$m_t \; [\text{GeV}] \; (\text{pole})$	$\pm 0.6_{\rm exp} \pm 0.25_{\rm th}$ [23]	$\pm 0.6_{\rm exp} \pm 0.25_{\rm th}$ [23]	$\pm 0.02_{\rm exp} \pm 0.1_{\rm th} \ [2, \ 23]$
$m_h \; [\text{GeV}]$	$< \pm 0.1$	$< \pm 0.1$	$< \pm 0.1$
$m_W \; [\text{GeV}]$	$(\pm 8_{\rm exp} \pm 1_{\rm th}) \times 10^{-3} [23, 40]$	$(\pm 1.2_{\rm exp} \pm 1_{\rm th}) \times 10^{-3} \ [20, 40]$	$(\pm 1.2_{\rm exp} \pm 1_{\rm th}) \times 10^{-3} \ [20, 40]$
$\sin^2 heta_{ m eff}^\ell$	$(\pm 0.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5} \ [20, 40]$	$(\pm 0.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5} \ [20, 40]$	$(\pm 0.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5} \ [20, 40]$
$\Gamma_Z \; [\text{GeV}]$	$(\pm 1_{\rm exp} \pm 0.8_{\rm th}) \times 10^{-4} \ [2, 26]$	$(\pm 1_{\rm exp} \pm 0.8_{\rm th}) \times 10^{-4} \ [2, 26]$	$(\pm 1_{\rm exp} \pm 0.8_{\rm th}) \times 10^{-4} \ [2, 26]$

FCC-ee projections, based on "First look" paper